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Abstract. We propose a method of analysing the glancing angle dependence of the RHEED
(reflection high-energy electrondiffraction} specular intensity 1{ 8) from liquid metal surfaces
and apply it to liquid In and Sn, for which preliminary RHEED experiments have recently
been performed. We use two models to derive ascattering potentizal that is supposed to cause
the specular reflection of fast electrons. Calculations of /{f) based on these madels reveal
that the tail behaviour of the scattering potential on the vapour side essentially determines
the characteristics of /{#) in the range of small glancing anple 8. The comparisons of these
calculations with experiments suggest that the scattering potential in the liquid-vapour
transition zone of liguid In results from neutral atoms, while the scattering potential due to
ions and extended conduction electrons is plausible for liquid Sn even in the surface region.
It is concluded from the present analyses that we need accurate experimental data for /{£)
in a wider range of 8 to determine the full behaviour of the surface density profiles of liquid
metals.

1. Introduction

Over the last two decades increasing attention has been paid to the microscopic theory
of liquid metal surfaces, and various types of theories have been developed [1]. These
theories are generally successful in predicting the surface tension of liquid simple metals
such as the alkali metals. However, all these theories are too crude or much too
complicated to provide a unified description for the surface tension and surface structures
of liquid metals. Rice and coworkers have primarily been concerned with the density
profiles in the liquid-vapour transition zone and performed Monte Carlo (MC) simu-
lations for liquid Na, Cs and Hg [2-4]. The atomic density profiles obtained in these
studies exhibit oscillatory or stratified structures on the scale of the interatomic distance.
Improved McC simulations for liquid Na [5] and analyses of x-ray refiectance experiments
on liquid Cs and Hg [6-8] also support the existence of such a structure in the density
profiles.

We wish to make some comments on the theoretical and numerical simulation studies
of liquid metal surfaces. The most serious difficulty in these studies is the calculation of
the effective Hamiltonian, which determines the energetics of the atoms (or ions) in the
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Figure 1. (a} Schematic illustration of the specular reflection of {ast electrons {or x-rays)
from a liquid metal surface. (b) A typical example of the RHEED reflection intensity obtained
by integrating the two-dimensional intensity detected on the fuorescent plate (placed
perpendicular to the specularly reflected electron beam) in one direction. The shaded area
represents the specular intensity.

highly inhomogeneous liquid-vapour transition zone [1, 2]. The achievement of self-
consistency between the ionic and electronic densities is also a difficult problem [4].
These difficulties are quite serious in the theoretical studies and, as we noted above, no
microscopic theory has been successful in predicting surface density profiles consistent
with the results of the x-ray reflectance experiments. It seems that numerical simulations
suffer much less from these difficulties, as they actually produced surface density profiles
consistent with the x-ray results [2-5].

In the present work we are concerned with reflection high-energy electron diffraction
(RHEED), which could be another useful experimental method complementary to x-ray
reflectance experiments. Suppose that a plane wave (x-ray or electron beam) is incident
on to the surface of a liquid metal and reflected. We take the 2 axis along the direction
perpendicular to the liquid surface and let 8 be the glancing angle of the incident wave
with wavevector k (see figure 1(a)). We take the axis of coordinates such that k lies in
the xz plane, so k = («,, 0, k) with k, = k cos 8 and k, = —k sin 6, and the asymptotic
form of the specularly reflected wave is represented by the plane wave with wavevector
k+ g, where ¢ = (0, 0, g) with g = 2k sin 0. Ii the atomic density profile exhibits any
oscillatory or stratified structure near the surface, we may expect an anomalous bump
in the specular reflection intensity /(6) around the glancing angle #, which satisfies the
condition 2x/q = [ or A/2sin @ = [, where [ is the characteristic length of the structure
inthe density profileand A = 2x/k isthe wavelength of the incident wave. The magnitude
of / may be of order of the interatomic distance in bulk liquids and so / = 3 A for liquid
Inand Sn, with which we are concerned in the present work. Therefore. if we use a typical
x-1ay source, say the Cr K, line with 2. = 2.29 A, in the x-ray reflectance experiments on
liquid In or Sn, the glancing angle & that satisfies the above condition ts about 400 mrad,
The x-ray reflectance data are actually available in the range of much smaller 8, i.e.
@ < 40 mrad. In other words, the characteristic length that can be directly probed in the
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x-ray reflectance experiments is about one order of magnitude larger than {, although
analyses of such experiments have successfully been made [6-8].

In RHEED, the reflectivity could be obtainable at glancing angles 6 amounting to
much larger momentum transfers g and so covering the characteristic length /. In fact,
for E = #%?%/2m = 20 keV, which is the energy of the electron beam employed in the
recent RHEED experiments, the value of @ satisfving the condition 2n/g=1=3 A is
about 15 mrad and in the range where experimental /(#) is available. This analysis
suggests that RHEED provides a useful method, at least in principle, for studying the
structures of liquid metal surfaces. If we take into account the refraction effect, which
we ignored in the above analysis, the momentum transfer ¢’ inside the surface is larger
than ¢ and the corresponding 6’ is smaller than the above value (see figure 1(2)). We
also note that an electron beam couples much more strongly with materials and hence
is a more surface-sensitive probe than an x-ray beam. This fact is also gratifying unless
the coupling is too strong to prevent the electron beam penetrating liquid metals to a
reasonable depth. The actual situation concerning these points will be clarified in the
present paper.

Based on the above considerations, one of the authors (TI) has performed pre-
liminary RHEED experiments on liquid In and Sn. These experiments have not yet been
successful in the measurement of the reflectivity over a sufficiently wide range of € but
provided a remarkable preliminary result: the reflectivity of liquid Sn decreases much
faster on increasing @ than that of liquid In, implying that the surface structures of these
liguid metals are quite differeat from each other. This is an unexpected finding, because
many other properties such as the surface tension and viscosity of these liquid metals
are quite similar to each other.

A solution to the scattering problem for fast electrons in liquid metals is a prerequisite
in the analyses of the RHEED experiments. Such a scattering problem is difficult to solve
and some simplifying approximations are inevitable to make the problem tractable.
The purpose of the present work is to establish a theoretical method which, although
approximate, can be applied to the analyses of RHEED specular intensity data and to
confirm the validity of the RHEED experiments in the structural studies of liquid metal
surfaces. The results of the present study are expected to provide a useful guideline for
further extensive RHEED experiments. A preliminary account of the present work can
be found elsewhere [9].

The organization of this paper is as follows. In section 2, we introduce the method
used to calculate the RHEED specular intensities /(8) for liquid metals, with special
emphasis on the approximate nature inherent in the method. In section 3, we apply our
method to liquid In and Sn and investigate how /(8) is related to the atomic density
profiles. The results of calculations for /(@) are also compared with the preliminary
experiments, with particular interest in the origin of the difference between these two
metals implied by the observed I(€). The final section is devoted to a summary and
conclusions,

2. Specolar reflection of fast electrons from liguid metal surfaces

Fast electrons incident on a liquid metal surface suffer scattering, and the scattered
waves can be classified into elastic and inelastic waves produced by elastic and inelastic
scattering, respectively, although the two are not independent but are coupled to each
other. We are concerned with the particular elastic wave giving rise to specular reflection,
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for which a structural inhomogeneity along the direction perpendicular to the surface is
responsible. The reflection intensities due to the other scattered wavesincluding inelastic
waves provide a diffuse background of the specular intensity. Experimentally, such a
specuiar intensity can be obtained by subtracting the background from the total intensity
in an appropriate manner as demonstrated in figure 1(b). In the analyses of the specular
intensity obtained in this way, one must be able to calculate, for a given surface structure,
the amplitude of the elastic wave giving rise to the specular reflection. One of the most
difficult problems in such calculations is how to treat the effect of inelastic scattering on
the particular elastic wave.

We note that, with the inelastic scattering taken into account, the amplitude of any
elastic wave would be lower than otherwise, and in this sense the inelastic scattering may
be treated aseffectively causing the ‘absorption’ of elastic waves. In fact, suchatreatment
of inelastic scattering in perfect crystals has been established and the scattering of fast
electrons can be described by the complex periodic potential [10, 11]

V(r) = X [V(6) + iV (G)] exp(iG - 1) ¢y
G

where G is the reciprocal lattice vector. The real part Vg(G) in equation (1) is the usual
structure potential consisting of the electrostatic potentials of the crystal atoms. In the
absence of inelastic scattering, Vr(G) determines the power intensity of the diffraction
spot associated with G. On the other hand, the imaginary part V\{G) accounts for the
inelastic scattering and represents the ‘absorption’ effect on that diffraction spot. The
most important mechanisms of inelastic scattering are the excitations of phonons,
atomic electrons and plasmons (in the case of metals). The inelastic scattering mech-
anisms in liquid metals are similar to those in crystals, although phonons in liquids are
not so well defined as in crystals. In spite of this similarity, the above treatment of
inelasticscattering cannot be applied to liquid metals in which no translational symmetry
exists and the wavevectors of scattered waves are continuously distributed. We also note
that, while we are primarily concerned with the surface, no such effect is inciuded in the
above treatment, Nevertheless, it may be useful to estimate the *absorption’ effect due
to the inelastic scattering in the case of crystals.

In the above treatment of the scattering problem, the effect of inelastic scattering
can be described in terms of the appropriately defined absorption coefficients. The
significance of such absorption effects on the diffraction spots depends on the size
and geometry (i.e. crystal orientation relative to the incident electron beam) of crystals.
We used the tables given by Radi [11] to estimate the absorption coefficient u, =
- (2m/h*k)V(0), which is appropriate for electrons transmitted through crystals with-
out being scattered and may be used for nearly-forward scattering. In these tables, the
values of Vi(G) are given for the external electrons with £ = 100 keV and we have to
multiply these values by the appropriate conversion factor to obtain the values in our
case (E = 20 keV). The value of p, obtained in this way is about 0.030 A~" for both In
and Sn crystals and not very large. (This value of p14 was estimated from those for other
metals, since In and Sn are not contained in the tables of [11].) We note that phonon
excitations dominate V,(G) with G # 0 but contribute very little to Vi(0). Therefore, u;
is insensitive to the temperature and the above value of u for crystals may also be used
for liquid In and Sn. As we have mentioned in the above, the significance of inelastic
scattering is not determined only by the ‘absorption’ coefficients but also depends on
the experimentai situation. In fact, the absorption effect may be insignificant in the case
of RHEED, as we discuss immediately below.
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In RHEED experiments for liquid metals, in which fast electrons are incident with
small giancing angles, the wave field is predominantly distributed in the surface region.
The inelastic scattering in such a situation is more restrictive than in the bulk and the
absorption coefficient ugy would be much reduced compared to that estimated in the
above. Furthermore, though not justified a priori but confirmed in our analyses, the
scattering that occurs in the liquid-vapour transition zone dominates the specular refiec-
tion intensity and the electrons involved in such scattering travel only a short distance
through the liquid metals. All these characteristic features of RHEED suggest that we
may safely ignore the effect of inelastic scattering in the analyses of the experimental
data. We followed these arguments and entirely ignored the effect of inelastic scattering
in the present work., A more complete justification for ignoring inelastic scattering
constitutes an important theoretical work and is outside the scope of the present work.

In the above basic approximation, we may consider that external elecirons are
scattered by the structure potential V(r) composed of the electrostatic potentials due to
atoms (or ions and conduction electrons). In the calculations of the RHEED specular
reflection intensities, the Schrédinger equation in our scattering problem is conveniently
written as

hv2
( B 2m

+ Vi(2) + AV(r)) Y(r) = E¥(r) (2)

where E = A%*/2m is the energy of an incident electron with wavevector &, V(z) =
{V(r))isasmoothed oraveraged potential obtained by smearing V(r) in the plane parallel
to the surface and AV{r) = V(r) — V(z). The wavefunction W(r) in equation (2) is
subject to an appropriate asymptotic condition. V(z) will be called a surface potential
hereafter. The specular reflection of incident electrons is essentially determined by
V,(z), while AV(r) may be treated, though not rigorously, as giving rise to the non-
specular reflection as well as causing the ‘absorption’ of the incident, refracted and
specularly reflected waves through multiple scattering. In fact, any electron that is
scattered and has no chance of returning is lost from the original wave and, in this sense,
multiple scattering effectively causes the ‘absorption’ of any wave.

The above ‘absorption’ effect due to multiple scattering is similar to that due to
inelastic scattering and its significance can also be estimated, though approximately, in
terms of the absorption coefficient. If we assume that the atoms in liquids can be treated
as independent scatterers, the absorption coefficient due to multiple scattering is given
by py = PCaoms Where g is the number density of atoms and o, is the scattering cross
section of a single atom. In the Born approximation, &, is given by

Ouem = gz | 1ouam(@) g dg ®)
atom 4Jt'ﬁ2E0 atom

where v,m(g) is the atomic form factor, i.e. the Fourier transform of the atomic potential
Vatom(r) (s€€ €quation (8)). For the In atom, we obtained 0, = 0.67 A2 for £ = 20 keV
andso gy = 0.025 A~'in the bulk liquid. This value of yi,, is comparable to the absorption
coefficient gy due to inelastic scattering. In the liquid-vapour transition zone, where the
atomic density is much lower than the bulk density, the magnitude of x4, is much smaller
than the above value. Therefore, following the arguments given for the effect of inelastic
scattering, we may also ignore the effect of multiple scattering. This approximation may
be viewed as an effective refractive index model without dissipation.
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In the above approximation (AV(r) = 0). the wavefunction W(r} in equation (2) is
expressed as W(r) = exp(ik,x) exp(ik,y)w(z), where k, = Oin our case (see figure 1(a)),
and the problem is reduced to the one-dimensional seattering problem represented by
the Schrédinger equation

R d?w(z) hik?
m dz? + Vi(zw(z) = _w( 2). (4)
In equation (4), k, = — k sin & as before and the wavefunction w(z) is subject to the
asymptotic condition given by
aexp(ik,z) + bexp(—ik, z) (z—> )
way={ " ©)
exp(ik;2) (2> —o)
where
k! = k,[1 — V,(~=)/Esin?@]'". (6)

Once V(z) is given, we can determine the constants 2 and & in equation (5) by solving
the above Schrddinger equation (equation (4)) numerically by the standard method
(e.z. Runge-Kutta-Gill method). Then, the specular intensity (reflectivity) is given by
K(6) = |b/al’.

2.1. Model I

In the present work we used two models to calculate the structure potential V(r) felt by
an external electron. Ia the first model (which we call model I hereafter). V{r} is given
by the superposition of the atomic potentials:

V(r) = 2 vaom(lr = £l)- 7

In equation (7), r,represents the position of the ith atom and v,,,, is the atomic potential
given by

Vatom ($) = Ne- ]d a‘:n:-('?r .
- — ZNE’ l = _CL(_Q
= p + Sfo o) dr + :[ . dt o

where Z, is the atomic number, 7,,,,,(¢) 1s the electron density in each atom and o(f) =
4t%n,,(1)€%. The Fourier transform of v,on(r) is the atomic form factor vy em(g) in
equation {3). The above treatment of the structure potential has been common practice
in the analyses of electron diffraction experiments [11]. The exchange and correlation
effects between the external and metallic electrons may be ignored for high-energy
electrons in RHEED experiments.

The above model may be called a neutral atom model and is clearly not adequate
in bulk metals. The valence electrons should be treated more properly as extended
conduction electrons, at least in bulk metals, and we actually make such a treatment in
our second model. However, for a metal consisting of heavy atoms, the electrostatic
potential due to the core electrons dominates the electronic contribution to V(r) and
any difference arising from the different treatments of the valence electrons could be
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insignificant in bulk metals. We will come back to this problem when we apply our
models to the analyses of RHEED experiments.

In our effective refractive index model, the surface potential V(z) may most naturaily
be given by the thermal average of V(r):

Vi(2) = (Z vaomir = ) = [ vl = P (Z 067 =)

= [ ar' vuomllr = Do) ©)

where (. . .) represents the thermal average and p(r) = (£, 6(r — r))} is the atomic one-
body distribution function (i.e. atomic number density) [12], which is a function of only
z for a planar surface. Equation (9) can be reduced to

Vz)=12n Jm dz' p(z' + 2) jw dr ro gom (7). {10
= 121

Equation (9) or (10) relates V(z) to p(z) in our effective refractive index model.
A similar approach has been adopted implicitly in the analyses of x-ray reflectance
experiments [6-8].

2.2. Model 11

As we have discussed in the preceding subsection, the valence electrons should be

treated as extended conduction electrons, at least in bulk metals. In such a treatment

{(which we call model II hereafter), V(r) is given by
n(r'e?

V(r)=zuion(|r_rf!) +fdr' |r_ '|

(11)

where p;,,(r) is the electrostatic potential due to the nucleus and core electrons in each
ion and n(r) is the number density of the extended conduction electrons. In order to
avoid the difficulty associated with the long-range Coulombic interactions, equation
(11) can conveniently be rewritten as

V() = 2 vlllr = 1) + @) + () (12)
where

o) = v1eas) + 2625 13)

o) = [or TR 5 2 (19
and

patr) = [ ar =200 (15)

In the above equations, Z is the valence of the ion and py(r) is an (assumed) ionic number
density. We note that in the above expression for V(r} we added and subtracted the
terms containing Z and py(7) and, although gy(r) may be chosen arbitrarily, it is most
conveniently chosen to be the true one p(z) as we actually do in the following.
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We must be careful in the treatment of gy,(r), which we call the Madelung potential,
since its thermal average {@n(r)} vanishes. In the Wigner-Seitz (Ws) approximation,
which is useful in bulk metals, ¢y is given by

ou(r) = 2mpy ZeX(RE — 4%y = Ze*fr ~ T

where R, is the atomic (or ws) sphere radius defined by (47/3)R? = 1/p,, p, being the
atomic number density of a (bulk) metal, and r is the distance from the ion in each atomic
sphere. The average value of ¢y(r) in the atomic sphere is then given by [11]

Ty = — %Gzez/ R,
and this result may be used in bulk metals. In order to calculate @y in inhomogeneous

liquid metals, we employed an intuitive approximation that may be viewed as a local
density approximation:

Pm(2) = — &Ze? /R(2) (16)
-where R,(z) is the atomic sphere radius defined by the local density p(z): (4/3)R,(z)? =
1/p(2).

For a planar surface, the electron density #(r) is also a function of only z if the
electron-ion interaction is taken into account to first order in the perturbation cal-
culations [1. 13, 14]. In this approximation, the electrostatic potential ¢, given by
equation (15) can easily be calculated from the Poisson equation (rather than directly

from equation (15)) once p(z) and the corresponding n(z) are given, The result is given
by

Po(2) = — d7e? j "z f x dz" [n(2") — Zp(z")] (17)

with @ () = 0. The method of calculating n(z} is discussed below.
Then, the surface potential V(z) in model II corresponding to that in equation (9)
is given by

Vi) = [ aroilir = PDo(z") + @u(@) + 9 (1)

where the first term on the RHS, which we denote @y{z) in table 1, is the thermal average
of the first term on the RHS of equation (12), and @y(z) and g.,(z) are given by equations
(16) and (17) respectively.

The remaining problem in model II is the calculation of the electron density profile
n(z) for a given p(z). As we have mentioned above, in order to calculate n(z) we
employed first-order perturbation theory, making use of a simple empty-core model
potential [15]. In this approximation, together with the local density approximation
(Lpa) for the exchange and correlation energies of an inhomogeneous electron jellium,
we could follow Lang and Kohn and calculate n(z) by solving the Kohn-Sham equation
applied to the surface [16]. In the present work, however, we employed a variational
method, which is much simpler and easily tractable [1, 13, 14].

In our variational calculations, we assumed that the Gibbs dividing surfaces of both
electrons and ions are located at z = 0 and used a parametrized n(z) of the form

{nb[l — A exp(a, z) cos(yz)] {z <0)
np(l = A) exp(—a,z2) (z>0)
where #, is the bulk density. Two of the four parameters A, a;, @; and ¥ in equation

n(z) = (19}
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(19) can be eliminated by the requirements that dn(z)/dz is continuous at z = 0 and the
Gibbs dividing surface is located at z = 0, i.e.

IH] -3
j [n(z) — ny] dz + f n(z) dz = 0. 20)
—a 0
The remaining parameters are determined so as to minimize, for a given ionic density
p(z), the electronic contributions to the surface energy. In our calculations, we used the
Lpa for the exchange and correlation energies and the density-gradient expansion
for the kinetic energy of an ithomogeneous electron jellium. In the density-gradient
expansion we included up to second gradient terms (fourth order in the gradient of n(z)).
The details of the computational procedures are given elsewhere (1, 13, 14]. We have
confirmed that the surface properties of the electron jellium calculated in this way are
in reasonable agreement with the corresponding results of Lang and Kohn {16] in the
range of metallic densities.

3. Applications to liquid In and Sn

Preliminary RHEED experiments were performed for liquid In and Sn just above their
melting points. These metals were chosen for practical reasons such as their low melting
temperatures and low vapour pressures. The energy E of the electron beam used in these
experiments was 20 keV and the RHEED specular intensities I(8) were measured for
varying glancing angle 6. We also use this value of E throughout the following analyses.

We performed atomic structure calculations for a neutral atom to calculate the
atomic potential ,,,,(r) in equation (8). We also used a neutral atom rather than a free
jon to calculate the ionic core states used in the calculations of v;,,(r) in equation (11),
because the ionic core states calculated in this manner should be more appropriate in
solids or liquids, The parameters and inner values of the surface potentials V(z) of liquid
In and Sn are summarized in table 1,

3.1. General aspects

We first investigated general aspects of the interrelation between the surface potentials
V(z) and the RHEED specular intensities /(&). For this purpose, we used a parametrized
density profile of the form

Pull — B exp(f,z) cos(62)] (z<0)
°E)= {pb(l — B) exp(—f22) (z>0). -

Two of the four parameters B, §,, §; and & can be eliminated by the same requirements
as those imposed on #(2) given by equation (19). The above form of p(z) has frequently
been used in the theoretical studies of liquid metal surfaces [1, 14].

We considered both monotonic and oscillatory density profiles in our analyses,
Monotonic profiles are obtained if we set 8 = 0 in equation (21) and in this case 1/8;
(=1/B.) represents the degree of surface width. An oscillatory or stratified structure in
p(z), if any, is a manifestation of the correlation between atoms and a steep confining
potential (for atoms in liquids) formed at the surface (see figure 2(b)). Such an oscillation
in p(2) is essentially the same as that found in the radial distribution function g(r) in bulk
liquids. In the previous work [9], we used a value of 8R; = 3.8, which produces an
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Table 1. Parameters and inner values of the calculated surface potentials of liquid In and Sn
at their melting points T,,. Here r, is the empty-core radius of the model potential {15] used
in model I and @y(2) represents the first term on the RHS of equation (18), The inner
potential ¥,{—) and its component parts are given in units of eV, The values of @,(—)
and V,{—w) in model II {equation (18)), which are not sensitive to the ion density profile
p(z), are those calculated for the p(z) given by equation (21) with R, = 4.2 and 1R, = 0.7

(curve Bin figure 2(2)).
Model 11
T. R, r. Model [
Metal Zy Z (K) (au) (au) Vi(-%) @o(-%) @u(-%) @u (-2} Vi-=)
In 43 3 430 3.52 1.32 -18.61 ~-836  —6.95 -7.98 -23.29
Sn 50 4 505 357 130 -18.62 -7.09 -9.14 996 -26.19

oscillation in p(z) similar to that in g(r). However, we find that a slightly larger value of
& is more plausible in accordance with the results of MC simulations for Na and Cs [2-5]
and with the analyses of the x-ray reflectance experiments [8]. Therefore, we used a
value of dR, = 4.2 for oscillatory p(z} in the present analyses, although the difference
arising from this change (about 10%) in the value of & is minimal. Other values of & (for
oscillatory p(2)) much different from the above values are not compIeter precluded but
are difficult to interpret on a physical basis.

Figure 2(a) shows some typical examples of the atomic (or ionic) density profiles
p(z) given by equation (21} and the corresponding electron density profiles n(z)
(equation (19)) obtained for liquid In, the latter of which is relevant in model II. The
surface potentials V() and RHEED specular intensities /(6) calculated for these p(z) in
the models are shown in figures 2(b) and {c) respectively, The main points of these
results are as in the following.

(i) We find in figure 2(a) that the electron density n(z) in model II shows a large
relaxation at the surface and is not sensitive to the details of the ionic density profiles
p(z). This result can be understood by the important role played by the kinetic energy
of the conduction electrons, which favour smooth densities, in determining the density
in inhomogeneous systems [16]. The electrostatic dipole potential g.(z) in model II
dominates the tail part of V,(z) on the vapour (vacuum) side because of the large
relaxation of n(z) at the surface and the resulting V,(z) in model 11 shows aslow variation
in that region compared to that in model L. The values of V() (i.e. the depth of V(z)
in the bulk) in the two models are also somewhat different from each other (see figure
2(b) and table 1) and, with the exception of this difference, the two models are quite
similar to each other in the bulk side. As we will discuss below, the RHEED specular
intensity I(8) is not sensitive to the depth of V,(z) and therefore the important difference
between the two models may be characterized by the different behaviours of V(z) on
the vapour side.

(ii) In the range of small glancing angles (€ < 8 mrad), the RHEED specular intensities
1(8) obtained in model II decrease much faster on increasing 8 than those in model 1
(see figure 2(c)). These results can be explained by the fact that the tail part of V,(z) on
the vapour side essentially determines /(@) in the range of small 8: the more slowly that
part of V,(z) varies, the more rapidly I{#) decreases on increasing & in that range, almost
irrespective of the behaviours of V(z) on the bulk side. The steep rises of V,(z) on
crossing the liquid—vapour transition zone begin to influence f{#) at 8 = 8 mrad and the
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Figure 2. (4) Typical examples of the atomic {or
ionic) density profiles p(z) given by equation (21):
A (full curve), 8§ =0 and B \R, = 6.5; B (broken
curve), &R, = 4.2 and B,R, = 0.7. Thin curves
(full and broken) are the corresponding electron
density n(z) {equation (19)) in model IT. The step
density profile is also shown in this figure for com-
parison. (&) Surface potentials Vi(z)in twomodels
(equations (9) and (18)). Curves A and B in each
model are those calculated respectively for the
atomic {or ionic) density profiles A and B in (a).
(¢} Comparisons of the calculated (curves) and
experimental (full circles) RHEED specular inten~
sities (#) for liquid In. Each curve corresponds
to that in (&) and the experimental data are nor-
malized such that thesmoothextrapolation of /{8)
to 8 = 0is unity.
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bumps around € = 15 mrad found in J(6) of model II can be ascribed to that behaviour
of V,(2). In contrast with this, /(&) in model I shows no such behaviour but happens to
decrease monotonically on increasing 8. Such a structureless J{8) can be explained as
follows: the steep rise and tail behaviour of V((z) in model I are roughly characterized
by asingle-exponential function reflecting such a variation of p(z) for 2 > 0(see equation
(21)).

(iii) As we have discussed in section 1, one would have expected an anomalous bump
in I{@) for an oscillatory p(z). Contrary to thisexpectation, /(8) exhibits no such anomaly
that can be ascribed to the oscillation of p(z), as is clear from the results of #(8) in model
I. One reason for this is that the scattering that occurs inside the surface contributes very
little to J(6) in the range of small @ and, as we have discussed in the above, /(@) is
essentially determined by the scattering that occurs on the vapour side. Another reason
is discussed below.

(iv) In spite of the above unfavourable feature of RREED, it may be useful to see more
closely the present situation and thereby o see what we can or cannot expect in a
different situation where the incident electrons can penetrate liquid metals much deeper.
Following the discussion in section 1, we may expect an anomalous bump in /{8} if the
condition 27t/q' = [ is satisfied at some value of 8. Here, ¢' = 2|k} | is the momentum
transfer (in units of #) in the interior, k. being given by equation (6), and [ is the
characteristic length of the oscillation in p{z). We note that the momentum transier
inside the surface is given by ¢’ = 2|k, | rather than ¢ = 2k sin @ because of the refraction
cffect as illustrated in figure 1(a). Using equation (6), we have

2rn/g’ = m/[k? sin? @ — 2mV (—o)/A]"2. (22)

For liquid In and Sn, the maximum value of 2xr/¢’ (which occurs at 8 = 0) is given by
(27/q ) mas = 0.75 R, and 2 /q’ = 0.42 R, at & = 10 mrad in model I, and these values
are smaller than the characteristic length { = 1.5 R, of the oscillatory p(z) in figure 2(a).
These results indicate that, even if the reflection intensities due to the scattering inside
the surface are sufficiently strong, the oscillatory structure of such a p(z) produces no
anomaly in the RHEED specular intensity /() but reveals itself in /(6) in an indirect
manner, Nevertheless, the sitution concerning this point is not worse than that of the x-
ray reflectance experiments, in which the values of 277/g" are more than one order of
magnitude larger than the characteristiclength /in the range of # where the experimental
data are available (see the discussion in section 1). The scattering inside the surface
becomes more important at higher & and for higher-energy incident electrons. There-
fore, possible improvements over the existing RHEED experiments should be along such
aline.

(v) In model 1 with the use of the parametrized p(z) given by equation (21), the
monotonic p{z) (8 = 0) with B,R, = 6.5 (curve A in figure 2(a)) provides a best fit (full
curve in figure 2(c)) to the experimental /(8) of liquid In. If we allow for a physically
acceptable oscillation in p(z), model I produces almost unique /(#) in the range of small
8, which decreases too rapidly on increasing § to explain the experimental /(8). The
theoretical results of /(8) in model 1I are also almost unique in the range @ < 8 mrad as
we have discussed in item (ii), and these I(8) are also too small to explain the exper-
imental J{#) of liquid In. These results suggest that model II, which is apparently more
plausible than model I, cannot be applied to the surface of liquid In. In other words,
liquid In can be treated more properly as consisting of neutral atoms in the calculations
of V,(z)} in the liquid-vapour transition zone. The situation of liquid Sn is quite different
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from this and, as we will show in section 3.3, for this metal the predictions of model 11
are consistent with experiments.

3.2. Liquid In

As we have discussed in the preceding subsection, model I with the use of a monotonic
atomic density profile p(z) reproduces reasonably well the observed /(@) and model II
may be precluded in the analyses of the RHEED experiments. We also note that the
behaviour of p(z) on the vapour side, which essentially determines that part of the
surface potential V,(z) in model I, is of crucial importance in determining /{8) in the
range of small 6. The parametrized p(z) (equation (21)) used in our analyses decays
exponentially on the vapour side, but such a behaviour is not realistic for classical
particles as actually implied by MC simulations [2-5]. Therefore, more careful treatments
of p(z) could be essential in the analyses of the experimental /(8) based on model I.

A realistic p(z) would exhibit a more rapid decay than the exponential decay on the
vapour side. Such a p(z} may be obtained, though somewhat arbitrarily, from that of
equation (21) by adding a term that decays linearly on the vapour side:

py[1— Bexp(B,2) cos(dz)] (z<zy)
p(2) = {puiCexp[—Falz—20)] = D(z—20)}  (20<2z<2)) (23)
0 (z>2)

where C = 1 — Bexp(f,z,) cos(8zy) and D(z, — z¢) = Cexp[—B:(z, — zy)] from the
continuity conditions of p(z) at z = z; and z = z,, We also required that dp(z)/dz is
continuous at z = zg and the Gibbs dividing surface is located at z = 0 (see equation
(20)). Foroscillatory p(z) (6R; = 4.2), the parameter z,was determined by the plausible
condition that z;is the largest (outermost) value of z at which d’p(z)/dz? vanishes. This
condition is reduced to

zp = (1/6) tan'[(1 = 1*)/27) (24)

where n = 6/8,. We simply used the value z; = 0 for the monotonic p(z) (8 = 0). Five
parameters can be eliminated by these requirements and we choose 8, §, and d =
B:(z, — z;) asthe remaining parameters, where dis an important parameter determining
the decay characteristic of p(z} on the vapour side.

As before, we consider both monotonic {6 = 0} and oscillatory (8R, = 4.2) density
profiles and treat 3, and d as the fitting parameters. The density profiles p(z) (equation
(23)) that reproduce the experimental /(@) are shown in figure 3(a) and the cor-
responding surface potentials V(z) in figure 3(b). Figure 3(c) shows the comparisons of
the calculated /() for these p(z). For oscillatory p(z), 1(8) is insensitive to the damping
characteristics of the oscillation (i.e. the value of £,) in the range & < 20 mrad and the
value d = 1.0 provides a best fit to the experimental /(§). Therefore, in these figures
only two typical cases (§,R, = 0.7 and R, = 2.0) are shown for the oscillatory p(z).
We also used the value 4 = 1.0 for the monotonic p(z) and in this case §,R, = 3.4
reproduces best the experimental I{#), although other combinations of 4 and §, cannot
be excluded. These results may be summarized as in the following.

(i) In accordance with our analyses in section 3.1, the tail part of o(z) or Vi(z) on the
vapour side essentially determines the RHEED specular intensities f{#) in the range of
small 8. In fact, all the p(z) or V(z) that reproduce the experimental I(¢) show much
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the same behaviour on the vapour side. We also note that the modified p(z) given by
equation (23) provides a better fit to the experimental /(8) and therefore should be more
appropriate than that given by equation (21). Unfortunately, owing to the characteristic
feature of RHEED that we have discussed in section 3.1, it is difficult to determine the full
behaviour of p(z) from the existing RHEED data, which cover only the range of small @,

(i) The behaviours of p(z) other than the tail part begin to influence I(6) at
0 =20mrad as demonstrated in figure 3(c). We find that, in the range
20 mrad < 6 < 50 mrad, I(6) is higher for larger p(z) or deeper V(z) just inside the tail
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Figure 3. (a) Modified atomic density profiles p(z) given by equation (23), which, with the
use of model I, reproduce experimental J{ #) of liquid In: full curve, §R, = O and §,R, = 3.4;
broken curve, 4R, = 4.2 and 8,R, = 2.0; chain curve, 8R, = 4.2 and 8,R, = 0.7. Curves in
{b) and (c) show the corresponding surface potentials V,(2) (in model ) and the RHEED
specular intensities /{ @) respectively. (Full curves in (b) and (c) correspond to that in {a) and
s0 on.) Full circles in {c) show the experimental /(8).
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part (see figures 3(a) and (b)). Therefore, we need exact experimental I(#) at higher &
for determining such behaviour of p(z) from experiments. For such higher 8, I{8) is too
low to be measured with high accuracy at present and significant improvements in the
experimental techniques would be required to obtain more detailed information on
p(2).

(iii) As we have demonstrated in the above, model I together with appropriate p(z)
provides areasonable account of the existing RHEED experiments for liquid In. However,
it does not mean that liquid In is non-metallic in the bulk but suggests only that the
liquid-vapour transition zone of this metal can be described by a neutral atom model.
We note that both models {model I and model II) produce similar V(z) inside the surface
and may be viewed as essentially the same as far as the bulk side is concerned.

3.3. Liquid Sn

As we have mentioned at the end of section 3.1, the observed RHEED specular intensity
I(8) for liquid Sn decreases much faster on increasing 6 than that for liquid In (see figure
4). i we use model I and the parametrized p(z) given by equation (21), the experimental
I(8) for liquid Sn can be reproduced best by the monotonic p(z) with 8,R, = 2.0. This
value of §,R, is much smaller than that of liquid In and such a highly relaxed p(z} is not
plausible near the melting point and difficuit to interpret. We also note that model I with
the use of a modified version of p(z) given by equation (23) can hardly reproduce the
experimental /(8) of liquid Sn. These results suggest that model I is not applicable to
the surface of liguid Sn. As we have demonstrated for liquid In, the calculated I(8) in
model II decreases much faster on increasing @ than that in model T and such a result is
consistent with the observed I(8) for liquid Sn. Therefore, it may be useful to investigate
mode] II in more detail by applying it to liquid Sn.

As we have already discussed in section 3.1, the tail part of the surface potential
V{(z) on the vapour side is essentially determined by the large relaxation of the electron
density n(z) at the surface and the resulting V(=) is not sensitive to the details of the
ionic density profile p(z). For this reason, we used a parametrized p(z) given by equation
(21) in our analyses based on model II, although the above characteristic feature of
model II precludes the possibilities of obtaining useful information on p(z) from the
existing RHEED experiments. Figure 4 shows the RHEED specular intensities /() cal-
culated in this way for some typical p(z) and their comparisons with experiments. These
results of f{8) for liquid Sn actually show rapid decreases on increasing 6 and are
generally in reasonable agreement with experiments in the range of small 8. The
insensitivity of the calculated I(8) to p{z) in fact makes it difficult to determine which
p(z) is most plausible, although a slightly oscillating p(z) (6R; = 4.2) with 1R, = 2.0
{chain curve in figure 4) seems to provide a best fit to the experimental /(#). The rapid
decreases of [(0) predicted in model II terminate at € = 8 mrad and at higher & these
I{(8) show quite different behaviours depending on the steepness of p(z) or V,(z) near
the surface. Again, we need more accurate experimental /(6) extended to higher @ for
obtaining useful information on p(z) but the prospect is much less than that for liquid
In. After all, the only conclusion we can draw from our analyses of the existing RHEED
data on liquid Sn is that the liquid—vapour transition zone of this metal is metallic in
contrast to the case of liquid In.

4. Summary and conclusions

We have made detailed analyses on the validity of using RHEED specular intensity
measurements for structural studies of liquid metal surfaces, In these analysesweighored
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the effect of inelastic scattering and used an effective refractive index model. In these
basic approximations, we used two models for calculating the surface potential V(z),
which is supposed to cause the specular reflection of fast electrons: in the first model
{model I} the potential felt by an external electron consists of the electrostatic potentials
of neutral atoms, while in the second model (model II) liquid metals are treated as
consisting of ions and extended conduction electrons.

We found that the two models produce quite different results for the RHEED specular
intensity f(8) in the range of small glancing angles & and these different results in the
two models are in parallel with the different experimental {#) obtained for liquid In
and Sp. For liquid In, to which model I may be applicable, the tail part of the atomic
density profile can be determined almost uniquely by the existing RHEED data. On the
other hand, model 11 is plausible for liquid Sn, but in this case virtually no information
can be obtained for the ionic density profile, which is masked by the distribution of the
conduction electrons.

The most striking finding in our analyses may be that the liquid-vapour transition
zone of liquid In is non-metallic, while liquid Sn is metallic even in that zone. This
difference could be understood if the valence electrons of Sn are more loosely bound
and hence more easily extended than those of In. However, theoretical predictions for
such different behaviours of the conduction electrons at the liquid surface are quite
difficult and may be outside the scope of the present work. Experimentally, measure-
ments of the work function could provide other useful evidence for the different elec-
tronic structures at the surface. In fact, the electrostatic dipole potential g (z) at the
surface, which is the dominant contribution to the work function [13], is much reduced
if the liquid-vapour transition zone becomes less metallic. Unfortunately, such exper-
imental data are not avajlable as far as we know,

RHEED is quite surface-sensitive because of the strong coupling between external
electrons and materials and we owe the above finding about the difference between
liquid In and Sn largely to this characteristic feature of RHEED. Such a difference would



RHEED specular intensities for liquid metals 2785

not have been detected in the x-ray reflectance experiments for the reasons we have
discussed in section 1. At the same time, this novel feature of RHEED makes it difficult
to probe the structures inside the surface. The present analyses also suggest possible
improvements over the existing RHEED experiments. One such improvement is to make
exact measurements of RHEED specular intensity f(8) at higher glancing angles, and
anotheristouse anelectronbeamof higher energies. More extensive RHEED experiments
are under preparation along this line and these results as well as more exact theoretical
analyses are expected to appear in due course,
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